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Abstract
A computationally simple way to accommodate ‘basins’ of trapping states in
standard kinetic Monte Carlo simulations is presented. By assuming that the
system is effectively equilibrated in the basin, the residence time (time spent in
the basin before escape) and the probabilities for transitions to states outside the
basin may be calculated. This is demonstrated for point defect diffusion over a
periodic grid of sites containing a complex basin.

The kinetic Monte Carlo (kMC) method is used to evolve atomistic systems dynamically
from state to state over timescales much longer than can be achieved in molecular dynamics
simulations [1, 2]. The method utilizes a catalogue of state-to-state transition rates obtained
from atomistic (dynamic or static) calculations, to determine probabilistically a sequence of
states (and their residence times) that closely resembles the actual system dynamics. The
computational efficiency of the kMC method is due to the neglect of details: the system is
simply moved from one distinct state to another, and the time clock is advanced accordingly.
However, it may be that the set of transition rates is such as to equilibrate the system in a
subset of mutually accessible states, from which escape is a very rare event. This situation
of course reduces the efficiency of the method greatly. Here we present a simple means to
accommodate such equilibrating basins in the standard kMC approach for the case of defect
diffusion in solids or on surfaces. In fact the basin is regarded as just another accessible defect
site with a characteristic residence time. This is only possible when the defect is considered to
have equilibrated in the basin (that is, all sites in the basin have been visited many times), so its
entry and exit points are uncorrelated. This treatment of equilibrating basins will be particularly
useful for kMC simulations of defect diffusion in nanocrystalline materials, where the diffusion
coefficients for the defect in the grain boundaries and the crystalline grains may differ by many
orders of magnitude [3], and of radiation damage in solids, where microstructure evolution
(driven by defect diffusion) over very long timescales is of interest.

In a kMC simulation of defect diffusion, the defect moves over a regular or irregular
grid of sites (representing the potential wells that can accommodate the defect) according

0953-8984/07/072201+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/7/072201
mailto:clinton.vansiclen@inl.gov
http://stacks.iop.org/JPhysCM/19/072201


J. Phys.: Condens. Matter 19 (2007) 072201 Fast Track Communication

to probabilistic rules. The diffusion coefficient D is then obtained in the usual way: D =
〈x2〉/(2dt), where x is the defect displacement over the time t , and d is the dimension of the
space. Typically, the residence times associated with moves from visited sites are summed until
the required time interval t is completed. But for purposes of this derivation, it is necessary also
to regard t as the sum of the accrued residence times at the visited sites. This is because those
accrued times, for sites in the basin, are proportional to the equilibrium defect concentrations
there. Also, for purposes of the derivation, it is convenient to use the term ‘periphery site’ for
those sites in the basin from which the defect can move out of the basin. With this terminology
set, we obtain expressions for the probability pi of escape from the basin via the particular
periphery site i , and for the residence time tbasin associated with a visit by the defect to the
basin.

Consider a defect at periphery site i . With each move from site i , the accrued residence
time for that site increases by an (average) amount τi = (

∑
b(i)ki→b(i) + ∑

q(i)ki→q(i))
−1,

where the two sums are over all transition rates from site i to accessible sites b(i) within
the basin and to accessible sites q(i) outside the basin, respectively. The probability that it
will escape the basin on that move is εi = (

∑
q(i)ki→q(i))τi ; thus on average one of every

ε−1
i visits by the defect to site i will result in an escape. In that event, the residence time

te
i ≡ τiε

−1
i = (

∑
q(i)ki→q(i))

−1, on average, has accrued to site i . It is noteworthy that te
i is a

function only of the rates ki→q(i) out of the basin.
Of course, the basin may contain many periphery and interior sites. As the defect moves

within the basin, it produces an increasingly accurate set {tk/〈tk〉} of relative residence times,
where the sites k are in the basin (periphery and interior) and the average (indicated by the angle
brackets) is taken over all sites in the basin. In fact the elements tk/〈tk〉 approach the values
ck/〈ck〉, where ck is the equilibrium defect concentration at site k that is routinely obtained
in molecular dynamics and statics calculations (ck is an exponential function of the defect
formation energy at site k). During the time T = ∑

ktk , the number of visits by the defect to
site i is ti/τi . Since the probability that a particular visit will not lead to an escape from the
basin is (1 − εi ), the a priori probability that the defect does not escape from the basin via site
i during the time interval T is (1 − εi )

ti /τi . Then the a priori probability that the defect does
escape the basin via site i during the time interval T is 1 − (1 − εi)

ti /τi ≈ (ti/τi )εi for εi � 1.
This equals ti/te

i when the definition te
i ≡ τiε

−1
i is used. Thus the probability pi that the defect

escapes the basin from periphery site i rather than from another periphery site is given by

pi = (ti/te
i )

(
∑

j

(t j/te
j )

)−1

(1)

where the sum is over all periphery sites j . Substituting into equation (1) the expression for te
i

gives

pi = ti
∑

q(i)

ki→q(i)

[
∑

j

(

t j

∑

q( j)

k j→q( j)

)]−1

. (2)

As is evident from this last equation, the escape from periphery site i out of the basin would
be to site q ′ with probability pi→q ′ = ki→q ′(

∑
q(i)ki→q(i))

−1, where site q ′ is one of the set
{q(i)}. That is, a defect trapped in the basin will escape via periphery site i to site q ′ (outside
the basin) with probability Pi→q ′ = pi pi→q ′ .

The long-term, average behaviour of the defect is thus reproduced by the standard kMC
method, with the addition that, if the defect enters the basin, on its next move it escapes the
basin from a periphery site chosen in accordance with the probability distribution implied by
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equation (2). The residence time tbasin associated with this move is given by the relation

tbasin =
∑

j

t e
j p j +

∑

k

tk
(
te

j p j/t j
)

(3)

where the first sum is over all periphery sites j , and the second sum is over all basin interior
sites k. The second sum accounts for the time the defect spends at interior sites, which in
the case of a particular interior site k equals the ratio tk/t j of time spent by the defect at site
k to time spent at an arbitrarily chosen periphery site j , multiplied by the average time te

j p j

spent at site j during a visit by the defect to the basin (note that the ratio te
j p j/t j is identical

for all periphery sites j ). The simplest example demonstrating equation (3) is that of a basin
comprised of n identical periphery sites (that is, the probability p j of escaping the basin via a
particular periphery site is 1/n, and all te

j equal the ‘lifetime’ te) and no interior sites. Clearly
the average residence time in the basin per visit by the defect is te, so the average residence
time in each periphery site per visit to the basin must be te/n, which equals te

j p j as expected.
By use of equation (2) for p j , equation (3) may be rewritten as

tbasin =
∑

k

tk

[
∑

j

(

t j

∑

q( j)

k j→q( j)

)]−1

(4)

where now the sum is over all (periphery and interior) basin sites k. As discussed above, the
ratio tk/t j may be replaced by ck/c j . Thus the equilibrating basin is accommodated by addition
of the set {Pi→q(i)} of probabilities for moves out of the basin, and the residence time tbasin, to
the kMC catalogue of transition rates.

It may be noted that the derivation of equation (1) relies on the use of the average value
(called τ above) for the time that accrues to a basin site with each visit by the defect prior
to escape. In conventional kMC simulations, the time may alternatively be advanced by an
amount �t taken randomly from the exponential distribution τ−1 exp(−�t/τ); that is, by the
amount �t = τ (− ln z) where z is chosen randomly from the interval (0, 1]. Thus it is possible
in the latter case to calculate the higher moments of the escape time from the basin as well
as the average time tbasin. Of course, the method developed here for handling deep basins in
kMC simulations presupposes that calculation of an accurate distribution of basin escape times
(whether desired or not) is not computationally feasible. In this event, it is recommended (for
consistency) that average values τ , rather than variable values �t , be used to accrue time to
sites outside the basin. This should not affect the average value 〈x2〉 obtained for a specified
diffusion time t , that is needed to calculate the defect diffusion coefficient D.

This method of handling a set of connected states may be contrasted with that of
Novotny [4], who applies the finite Markov chain formalism [5]. The basin sites are therefore
transient states, and the sites to which the defect moves out of the basin are absorbing states.
All transition probabilities connecting transient states, and connecting transient states with
absorbing states, are elements in the Markov transition matrix M. Then the formalism gives,
for the defect in a specified initial transient state, (1) the mean number of times in each of
the transient states before absorption, and (2) the probabilities for absorption in each of the
absorbing states. (See [6] for a detailed example of how to use finite Markov chain theory
to model stochastic physical systems.) The correlation between the entrance and exit points
at the basin periphery is thus preserved at the expense of considerable mathematical and
computational complication (e.g., a different matrix M is needed for each of the possible initial
states). That virtue is minor when the defect is essentially equilibrated in the basin before
its escape, and in any event may be negated by the various sources of error (e.g., inaccurate
transition rates) and the stochastic nature of the simulation. It should be emphasized that the
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Markov approach requires that all transition rates between basin sites be available, while the
present approach can alternatively use equilibrium defect concentrations.

Before applying the method to sample systems with complex basins, it is interesting to
consider a very simple, one-dimensional system that can be solved analytically. This is a linear
arrangement of four sites, labelled (in order) 1 through 4, where the transition rates k2→3 and
k3→2 are much faster than the rates k2→1 and k3→4. Thus a defect will ‘flicker’ between sites
2 and 3 many times before escaping to site 1 or 4 [7]. The average behaviour of the defect in
this system is easily calculated by use of the Markov formalism when sites 1 and 4 are regarded
as absorbing states. In the event that the defect is initially at site 2, the analytic calculation
produces the row vector

β = 1

p2→1 + p2→3 p3→4
( p2→1 p2→3 p3→4 1 p2→3 )

where pi→ j is the probability for the defect at site i to move to site j (so, for example,
p2→1 = k2→1/(k2→1 + k2→3)); the elements β1 and β2 are the probabilities for absorption
at site 1 and site 4, respectively; and the elements β3 and β4 are the mean number of times at
sites 2 and 3, respectively, before absorption. The expressions for β1 and β2 have been obtained
previously by Mason et al [7], by accounting for all possible numbers of flickers prior to escape
from sites 2 and 3: for example, the probability that a defect initially at site 2 will escape to site
1 is

∑∞
n=0(p2→3 p3→2)

n p2→1 = p2→1/(1 − p2→3 p3→2), which equals β1.
In the event that the defect is initially at site 3, the corresponding calculation produces the

row vector

β ′ = 1

p2→1 + p2→3 p3→4
( p3→2 p2→1 p3→4 p3→2 1 ) .

Then the ‘averaged’ results are given by the row vector β = χ2β + χ3β
′, where χ2 and χ3

are relative concentrations at sites 2 and 3 that satisfy χ2 + χ3 = 1 and detailed balance,
χ2k2→3 = χ3k3→2. Note that this averaging removes any memory of the ‘initial’ defect site
(that is, whether the defect entered from site 1 or from site 4). The averaged vector is

β = 1

p2→1 + p2→3 p3→4
( γ1 p3→2 p2→1 γ2 p2→3 p3→4 γ1 p3→2 γ2 p2→3 )

where γ1 = 1 + k3→4(k2→3 + k3→2)
−1 and γ2 = 1 + k2→1(k2→3 + k3→2)

−1. This may be
compared with the equivalent row vector B constructed from the stochastic quantities derived
above for an equilibrated basin:

B =
(

p2 p3
χ2tbasin

τ2

χ3tbasin

τ3

)

= 1

p3→2 p2→1 + p2→3 p3→4
( p3→2 p2→1 p2→3 p3→4 p3→2 p2→3 )

which very closely resembles β when p2→3 
 p2→1 and p3→2 
 p3→4.
A more complex basin is represented in figure 1. This system is a periodically repeated

(in both dimensions) 10 × 10 regular network of nodes (defect-accessible sites) connected by
bonds (diffusion paths), where the ‘equilibrating basin’ is the subset of 34 nodes connected by
the 40 thick bonds. Given the transition rates associated with each bond, it is a straightforward
matter to obtain the defect diffusion coefficient by a kMC simulation.

Table 1 presents the diffusion coefficients calculated by the standard method (‘Exact’)
and by the ‘basin’ method (‘Approximate’), and an estimate of the relative computation time
needed in each case, for three different sets of transition rates. The first set (row 1) has
ki→ j = 10 exp(−(μi − μ j )) for the thick bonds and ki→ j = exp(−(μi − μ j)) for the thin
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Figure 1. Representation of a system of trapping and non-trapping sites. Those sites (nodes)
connected by the thick bonds comprise the ‘equilibrating basin’ in which the defect may be trapped
for very long periods of time.

bonds, where the {μi } are chemical potentials assigned to the nodes with values taken randomly
from the interval [0, 1]. The second set (row 2) is similar to the first set, but with the difference
that the μi for nodes belonging to the basin are taken from the interval [3, 4], so that the
defect will segregate to the basin. The third set (row 3) is similar to the first set, but with the
rates ki→ j for the thick bonds having the prefactor 1000 (instead of 10). With these transition
rates, detailed balance is satisfied: ci ki→ j = c j k j→i . The set {ci} is needed to calculate the
probabilities {pi} and the residence time tbasin, and furthermore provides a nice check on the
calculations (namely, the accrued residence time ti at node i should be proportional to ci ). The
values for the diffusion coefficient D are believed to be accurate to ±1 in the last digit. In the
last column, the ‘speed-up factor’ (due to use of the basin method) refers to the computational
time needed to accomplish a given defect diffusion time t , not to the computational time needed
to achieve a particular accuracy.

The large difference in D values in the first row of table 1 shows that the basin method
does a poor job when the defect cannot equilibrate before escaping; that is, when there is a
significant spatial correlation between the entry and exit points (in this case due to the small
diffusivity contrast between regions, which does not sufficiently confine the defect to the basin).
Otherwise, the diffusion coefficients obtained by assuming the defect to equilibrate in the basin
are seen to be very comparable to the ‘exact’ values, while costing (potentially) orders-of-
magnitude less computer time. Furthermore, the accrued residence times at the nodes (both
inside and outside the basin) are in every case extremely close to their exact values (proportional
to the {ci}).

The results in table 1 give a general indication of the utility of the basin method. In
particular, the method is accurate when the defect is essentially equilibrated in the basin. The
extent to which this is the case may be determined by a conventional kMC simulation (where
the basin method is not used): the set {tk/〈tk〉} of relative residence times for sites in the basin,
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Table 1. Comparison of diffusion coefficients calculated by the kinetic Monte Carlo method. The
transition rates for the paths represented by thick and thin bonds in figure 1 are given by k(thick)

i→ j

and k(thin)
i→ j , respectively. The μi are chemical potentials associated with the nodes that, for the

purposes of this work, ensure that detailed balance is obeyed. The ‘Exact’ and ‘Approximate’ D are
diffusion coefficients calculated in the standard manner, and with the set of trapping states treated
as an equilibrating basin, respectively. The speed-up factor shows the computational advantage of
the latter approach.

Transition rates Exact D Approximate D Speed-up factor

k(thick)
i→ j = 10 exp[−(μi − μ j )]

k(thin)
i→ j = exp[−(μi − μ j )] 1.373 1.799 1.2

μi ∈ [0, 1]
k(thick)

i→ j = 10 exp[−(μi − μ j )]
0.0285 0.0287 3.1k(thin)

i→ j = exp[−(μi − μ j )]
μ

(basin)
i ∈ [3, 4]

μ
(non-basin)
i ∈ [0, 1]

k(thick)
i→ j = 1000 exp[−(μi − μ j )]

k(thin)
i→ j = exp[−(μi − μ j )] 1.79 1.799 81.0

μi ∈ [0, 1]

obtained for a single visit by the defect to the basin, is compared with the set {ck/〈ck〉}. The
two sets are more or less identical for a defect that is more or less equilibrated in the basin.

In general the basin method gives an upper bound for the actual diffusion coefficient.
This is due to its neglect of any spatial correlation between the entry and exit points at the
basin periphery: the distance between these points is, on average, less when they are spatially
correlated than when they are not. In either case the time spent in the basin per visit has
average value tbasin (calculated according to the analytic expression above), so a higher value
for the diffusion coefficient is obtained in the latter case. (That the average time spent in the
basin per visit is tbasin in both cases is evident from the fact that a kMC simulation will produce
a set {tm/〈tm〉} ≈ {cm/〈cm〉} (where now all sites m in the system—those outside the basin as
well as those inside—are included), whether the basin method is incorporated in the kMC code
or not.) A comparison of rows 1 and 3 in table 1 illustrates this point. The two systems with
different sets of transition rates nonetheless possess (by design) identical sets {cm}, {p j}, and
{k j→q( j)}, and identical basin residence time tbasin: this is the reason the two systems produce
the same ‘Approximate’ value for the diffusion coefficient (1.799). But the defect in the first
system (row 1) is not well equilibrated in the basin, causing an ‘Approximate’ value for D that
is too high in that case.

As a final comment, it should be emphasized that this approach to accommodating such
trapping basins (created by, for example, segregation or orders-of-magnitude differences in
transition rates as considered in table 1) in kMC simulations gives increasingly accurate results
as the degree of confinement increases, which is precisely the situation where kMC simulations
are, in the absence of this approach, increasingly inefficient and inaccurate.

This work was supported in part by the INL Laboratory Directed Research and Development
Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517.
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